Non-iterative Second-order Approximation of Signed Distance Functions for Any Isosurface Representation
نویسندگان
چکیده
Signed distance functions (SDF) to explicit or implicit surface representations are intensively used in various computer graphics and visualization algorithms. Among others, they are applied to optimize collision detection, are used to reconstruct data fields or surfaces, and, in particular, are an obligatory ingredient for most level set methods. Level set methods are common in scientific visualization to extract surfaces from scalar or vector fields. Usual approaches for the construction of an SDF to a surface are either based on iterative solutions of a special partial differential equation or on marching algorithms involving a polygonization of the surface. We propose a novel method for a non-iterative approximation of an SDF and its derivatives in a vicinity of a manifold. We use a second-order algebraic fitting scheme to ensure high accuracy of the approximation. The manifold is defined (explicitly or implicitly) as an isosurface of a given volumetric scalar field. The field may be given at a set of irregular and unstructured samples. Stability and reliability of the SDF generation is achieved by a proper scaling of weights for the Moving Least Squares approximation, accurate choice of neighbors, and appropriate handling of degenerate cases. We obtain the solution in an explicit form, such that no iterative solving is necessary, which makes our approach fast.
منابع مشابه
Smooth Shape-Based Interpolation using the Conjugate Gradient Method
In this paper a novel technique for smooth shapebased interpolation of volume data is introduced. Previously simple linear interpolation of signed distance maps has been used in practice. As it will be shown, this approach results in artifacts, since sharp edges appear along the original slices. In order to obtain a smooth 3D implicit function generated by interpolating 2D distance maps, we use...
متن کاملGradient projection based optimization methods for untangling and optimization of 3d meshes in implicit domains
Definition of complex domain as zero isosurface of scalar function resembling signed distance function is powerful and flexible mechanism of geometric modeling. Signed implicit functions can be constructed using surface triangulation, point clouds, set of planar cross-sections, “soup” consisting of disjoint edges and faces, and can be combined with analytical definitions and primitives using bo...
متن کاملPlanelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images
With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...
متن کاملA Fast and Accurate Expansion-Iterative Method for Solving Second Kind Volterra Integral Equations
This article proposes a fast and accurate expansion-iterative method for solving second kind linear Volterra integral equations. The method is based on a special representation of vector forms of triangular functions (TFs) and their operational matrix of integration. By using this approach, solving the integral equation reduces to solve a recurrence relation. The approximate solution of integra...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 29 شماره
صفحات -
تاریخ انتشار 2010